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MODELING THE RELATIONSHIP BETWEEN CATCH BIOMASS AND REVENUE IN A
REGIONAL SETTING WITH AN EXAMPLE OF THE NORTH CAROLINA
BROWN SHRIMP FISHERY

Marc-David Cohen and George S. Fishman

EXECUTIVE SUMMARY

Since the passage of the Fisheries Conservation and Management
Act (FCMA) in 1976 there has been increasing attention to the
problems associated with managing marine resources. By establishing
a fishery conservation zone that extends 200 nautical miles from the
coastline into the sea, the FCMA not only increased the zone of juris-
diction but also increased the responsibilities for managing the
marine resources found in that zone. To facilitate management, the
act established eight Regional Fishery Councils to “prepare, monitor
and revise" management plans to achieve the specific management goals
that are outlined in the act.

1t is this mandate for managing our fishery resources that has
encouraged research in areas that would help to provide a scientific
basis for management. These efforts have taken several different
directions. The most general of these directicns is in direct response
to the FCMA's call for a systematic approach to developing management
nlans. Broad plans have been nroposed by the regional councils for
developing comprehensive management sysiems (see Eldridge and Goldstein 1975).
Based on an assessment of the issues, they have targeted specific areas for
research and called for a completely new orientation toward solving management
problems. As Eldridge states with reqard to the management of the

southeast shrimp fishery,



The present management regime has evolved over

approximately 50 years and is based largely on

biological knowledge, experience, and intuition.

In fact, the major limitation of the present

regime is the lack of methodology to adequately

evaluate management decisions (Eldridge and

Goldstein 1975, p. 10}.
In this document the South Atlantic Committee for Shrimp Management
calls for the development of a methodology based on biological models
that would enable managers to evaluate the impact of management decisions
on the fishing industries. The purpose of the present paper is to intro-
duce such a methodology and to demonstrate its value using data from
the North Carolina brown shrimp fishery.

This work principally is concerned with developing a methodology
for evaluating the igpact of fishery management decisions on catch
biomass, catch revenue, and catch profit. In particular, it presents
models relating the character of the fish population to the distribution
of each measure of catch. It also shows with two examples how these can
be used with decision analysis technigues to determine optimal fishery
management policies. In both examples a manager must determine mesh
size and fishing season length for a shrimp population. In one case he
has perfect information about the cost of fishing; in the other case
he has incomplete information. The analysis shows how to determine the
optimal decision, based on maximizing profit, in both of these cases.

It also demonstrates how cne determines the value of cbtaining more
accurate fishing cost information when such information is incomplete.
The proposed models focus on the relationship between the size of an
arbitrary member of the fish population, the size of the fishing mesh in
the net, and the resulting catch revenue. These models form an integral

part of a comprehensive multiple age-class mode! for management nolicy

analysis.



Since variation in revenue and profit is important to fishing
institutions and consequently is an important element in fishery
management decisions, the proposed models explicitly acknowledge the
structural and random variation in revenue and profit. Both components
of variation in profit and revenue can be identified with sources of
variation in the marketplace, in the abundance of catch, and in the
size of the members of catch. In turn, the variation in catch biomass
can be identified with sources of variation in the abundance of the fish
population, in the size of its members, and in a contribution resulting
from the mesh size of the fishing net. Since stochastic simulation
models are pérticu]arly amenable to comprehensive, detailed modeling,
we focus our attention on these types of models.

Two models emerée in the paper: one relates revenue to catch
biomass, and the other relates the weight of captured fish to fishing
net mesh size and the character of the fish population. Each incorporates
the influences of both structural and random variation. In turn these
are used to describe how a particular mesh size (as characterized by a
mesh selectivity curve) affects the catch biomass, catch revenue, and
catch profit.

The relationship between revenue and catch biomass depends on the
characterization of price in terms of the mean and variance of the weight
of a captured fish. In the setting of the North Carolina brown shrimp

fishery we consider three sources of variation in this relationship.

The first source reflects the dependence of price on the size of
shrimp in the catch, directly proporticnal to shrimp size. The

second source represents a temporal component that reflecis
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changes with time in the relationship between price and size. The
thifd source accounts for the random variation that results from
factors excgenous to the regional fishery. Because the fishery is

a regional fishery, which accounts for a small portion of total catch,
price is independent of regional catch abundance. Consequently, the
relationship between price and regional catch abundance is not

examined.

The size of the fishing mesh affects catch in two ways. First,
the size distribution of captured fish depends both on the size distri-
bution of fish in the population and on the mesh size. Therefore, by
changing the mesh size one also changes the distribution of fish size
in the catch and consequently the nrice. Second, by changing mesh size
one also changes the number of fish captured, which in turn affects
revenue. We develop a model of net selectivity (based on a continuous
mesh selection curve) that accounts for each of these factors.

Although the models are presented within the framework of the
North Carolina brown shrimp fishery, they have greater generality.

In this setting, where data exist, techniques of parameter estimation
are given, along with parameter estimates and residual analysis,
Algorithms for parameter estimation and for computer simylation sampling
of catch revenue are also exhibited.

The purpose of developing comprehensive models is to provide the
fishery manager with tools that aid in policy analysis. The models we
exhibit provide the basis of a methodotogy for accompiishing this goal
as is amply demonstrated in the examples.

Eldridge, P.J. and S.A. Goldstein, ed. (1975}. The Shrimp Fishery of
the South Atlantic United States: A Regional Management Plan.

South Carolina Marine Resources Center Technical Report No. 8.
Charleston, South Carolina.
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Abstract

The ability of marine fishery managers to evaluate policy plans
before jnplementation improves management by identifying new potentially
noetul management technigues. Typically, management policy is evaltuated
with a measurc of harvest va!ﬁe cuch as catch revenue or catch profit.

This report addresses modeling the relationship between catch biomass

and revenue as a part of a larger stochastic fishery-simulation model

that s designed for policy analysis. The usefulness of this model in
addrassing management policy issues je illustrated in an example in Sec-
tion 4. This is accompl}shed in the setting of the brown shrimp (Penaeus
aztecus) fishery of Pamlico Sound, North Carolina. The report also presents
a model of the relationship helween fishing net mesh size and the character
of ratch biomass that is an extension of the Beverton and Holt (1957) model
of mesh selectivity.

Since these models are part of a larger stochastic simulation model,
probahilistic structure is important. Consequently, the report character-
jzes the distribution of catch revenue for a given catch biomass. Howi-
ever, because the character of the catch biomass is affected by both mesh
size and population age structure, these play a role in the distribution
of revenue. In particular, we include an analysis of the affects of mesh
size on the distribution of catch revenue for a single age class popula-
tion. Furthermore, the report presents several algorithms for sampling
catch revenue.

An example demonstrates the use of these models in management

policy analysis. It shows how alternative mesh sizes and fishery ciosing



dates affect profit in a hypothetical fishery. Furthermore, since
fishing cost is a factor in profit, the relationship between fishing
cost and the optimal mesh size and closing date is found. This enables

an analysis of the value of fishing cost information.

i1
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Introduction

Managers of marine fisheries have a variety of techniques for
fishery regulation. Fishing season restrictions and net-mesh size limita-
tions are two examples. The purpose of this report is two-fold:
1) to model the relationship between catch biamass and revenue in 2 way
that is useful for studying the effects of management reguiations, and 2) to

demonstrate the technique by examining the effects of season restrictions and

mesh size limitations on catch revenue.

Traditional biomass—rgvenue studies focus on how price per unit
biomass relates o biomggs supplied. Although this focus is useful
for determining a fishery supply curve, additional aspects of this
relationship need attention, particularly when modeling a regional
sagment of a national fishery. This paper describes these additional
aspects, which concern the structural components of supply and demand
on the national and regional levels, and incorporates them into a re-
gional model for evaluating dockside revenue as a function of the
character of the biomass caught in a regional setting.

In many fisheries the quantity of biomass landed in particular
regions has little effect on the national price structure. The North
Carolina brown shrimp fishery exemplifies this phenomencn. This
fishery is a segment of a national shrimp fishery that includes the

southeast Atlantic states and the Gulf states. Although important to

North Carolina, the effect of North Carolina shrimp landings on price



is sufficiently small so as to regard price as a given guantity.
Therefore, an analysis of revenue can focus on the variation in the
weight characteristics of landings without the need to delve into
the interaction between local price and local catch.

Two factors principally influence the weight distribution of
captured fish: 1} the age structure of the fish poputation and
2) the mesh size of the fishing net. By selecting a large mesh
size, one skews the distribution of catch to a larger and older seg-
ment of the fish population. However, the age structure determines
the total quantity of fish caught for a specified mesh size. In
particular, note that an age structure skewed to younger fish limits
the magnitude of biomass caught when using a large mesh size.

Although Beverton and Holt (1957) address the mesh-weight rela-
tionship in their discussion of the experimental work of Davis (1934)
and Jensen {1949), room remains to extend their analysis. Beverton and
Holt use data on controlled experiments to determine net selection curves.
For each length fish caught, a selection curve shows the ratio of catches
from two different mesh sizes. They suggest that selection curves be
represented by the ratio of the integrals of two nermal curves with

different means and common variances. We extend this model in a way that

jnsures its compatibility with our biomass-revenue model.



This technical report extends the Beverton and Holt model and
incorporates it and the biomass-revenue model into a stochastic char-
acterization of the dockside value of catch. This is accomplished by
first characterizing dockside revenues based upon the distributional
parameters of captured individuals without explicitly acknowledging
the mesh size effects. Then a characterization of dockside revenue is
exhibited which explicitly accounts for mesh effects. In particular,

the report:

(1) Presents a stochastic model of the hiomass-revenue relationship.

(2) Presents a stochastic model of the mesh-weight refationship.

{(3) Describes how the two models characterize the dockside revenue
of catch, -

(4) 17lustrates the estimation techniques using data on 1978 brown
shrimp landings in Pamlico Sound collected by the National
Marine Fisheries Service and the North Carolina Division of
Marine Fisheries.

(5) Presents an example of how the dockside revenue mode} can be
used as a management tool to compare revenue obtained from

fishing with two nets having differing mesh size.

These models are components of a larger study of the Pamlico
Sound brown shrimp fishery. The goal of the larger study is to
develop comprehensive methods for evaluating fishery management poli-
cies in a single year class fishery. Accordingly, the models presented

here reflect the concerns of the larger problem as is jllustrated in

the example.



1. The Weight-Price Relationship

The characterization of revenue is based on a model that relates
the weight of a captured individual fish to price in a regional setting.
Ho widely accepted models of this relationship exist in the fisheries |
literature. Since one of our goals is to characterize revenue in the
North Carolina brown shrimp fishery, we use data on that fishery to
i1lustrate the concepts that we have in mind.

Deseniption 04 Industry Practices and Datla

-

Before a catch is priced, the shrimp are sorted according to
size, either by machine or by hand. This grading process is done
either on the vessei or at dockside and either on a heads-on or heads-
of f basis. Regardless of the procedure each shrimp falls into one of
12 possible categories or qrades. Assignment is based on count per
unit weight, usually count per pound. A typical scenario includes
unloading the catch from the vessel and removing the head of each shrimp
as it is placed in a box according to grade. As a result each box
(cateqory) includes shrimp in a range of weights. Regardless, the price

per unit biomass is fixed for each box and is a function of its grade.



To represent this structure we partition weight by the points
{mi: i=0,1,...,12}, where Wy > Uy > e Wy > 0, and define the
kth category to include all shrimp whose count per unit biomass is
within the interval? [1/mk_1,1/wk) . For the purpose of modeling we
choose a representative weight factor w, for each class k=1,...,12
such that? 1/, ﬁf[ifwk_1'1/“k) . For example, if 1/w,  1is the mid-
noint of the kth interval then W = ka-lmk/(uk-l + uk}_ Table 1
lists the range of count per pound that defines each of the 12 cate-
gories used for describing shrimp tandings in North Carolina waters.3
These are taken from trip interview forms established jointly by the
National Oceanic and Atmospheric Administration and the Horth Carolina
Division of Marine Fisheries in 1978, these forms also include heads-
off price per pound by grade category, biomass landed by grade category,
landing date, shrimp species, gear used, location of the catch, time
snent fishing and dealer identification. Except for dealer identifi-
cation all these data were made available to us for the 1978 season.

Table 2 lists the geographical subdivisions of Pamlico Sound and‘adja-

cent waters for which data have been included in the analysis.

The half open interval [a,b) includes all points x such that asx <b.
“The expression xe[a,b) means that the point x 15 such that a € x <b .

3See the "South Atlantic Regioral Shrimp Trip Interview Form Instructions,”
published by the State/Federal Shrimp Management Committee, May 1, 1979.



Table 1

Shrimp Grading Parameters

k Grade Category Range

Count Per Pound *

J

1 1 to 15
¢ 15 tg 20
3 20 to 25
A 25 to 30
5 30 to 35
6 35 to 40
7 0 to 45
8 45 to 50
9 50 to 55
19 55 te 60
1 50 to 70
12 70 and up

-y

453,
30.
22.
18,
15,
2.
1.
10.

9.

8
7.
6
5

grams

grams

64.80
25.92
20.16
16.49
13.96
12.09
10.67
9.5%
8.64
7.89
6.98
6.05

pounds

143
057
.44
036
031
027
.24
g2l
.019
.017
015
013

*these are taken from the “South Atlantic Regicnal Shrimp Trip Form

Instructions,"published by the
Cormittee, May 1, 1979.

State/Federal Shrimp Management
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Table 2
Subdivisions of Pamlico Sound

and Ndjacent Waters

Alligator River
Roanoke Scund
Croatan Sound
Pamiico Sound
Pamlico Sound - East of Bluff Shoal
Stumpy Point Bay
lLong Shoal River
Pamlico Sound - West of Bluff Shoal
Juniper Bay
Swanquarter Bay
Rose Bay
Jongs Bay
Bay River
West Bay

Pamlico River
Pungo River
South Creek
Goose Creek
Oyster Creek

Mattamuskeet Lake
InTand Waterway
Alligator River to Pungo River

Goose Creek to Bay River

To remove the day-of-week effect, daily data were agqregated on a
weekly basis. Since the fishery is seasonal, typically opening in early
summer and closing in early winter, this agdregation allows one to pre-

serve the seasonal pattern. Although we recognize the need to account



for between-year variation, only one year of data was available, which is

insufficient to accomplish this.

Data Analysis

The data analysis focuses on the relationship between price per
pound and grade. A data point consists of an observation of the brown
shrimp price per pound for a given grade recorded from a dockside
transaction. Let the subscripts j and k denote week and grade,
respectively, J tihe set of weekly indices with more than one observa-
tion and Kj the set of grade indices with at least one observation."
Then for week j and grade k let N be the number of cbservations

Jk
and Pika. the 2th observation of price per pound. For each week

JeJ  the maximum observed price s QJ = max {ijg : 2=1.---.Njk; ke Kj}
A
50 that Apjkg = YJ - pjkz denotes the deviation from the max{mum ob-

served price for grade k on transaction % . Then

3 Ik
a ﬁ;qu"ikﬂ keky Jed,

where R&b is the number of points for which pjki ? ¢j , 1s the average
deviation from the maximum price per pound for week j and grade k.

The restriction that pjk£ z ?i is included because of the estimation

procedures used as is discussed in section 1.1.

“This restriction is required because of the estimation procedures used.

-8-
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Figure 1

Plot of the 1978 North Carolina Brown Shrimp
Average Deviation from Maximum Price Versus Weight,
and the Estimated Regression Line (weeks 29 through 34)

Figure 1 shows plots of the paints {(gsk, W, ) keKsd on a
semilogarithmic scale for selected values of j {weeks). The plots reveal

a linear assocation implying an exponential relationship between

S and w,  for keK. . Furthermore, for each J , visual

Jk k
examination of the set of deviations {In (Apjkg - Sjk): £ = ]n----Njki ke KJ}

—~



suggests that it is a set of independent cbservations of A narmaily dis-
tributed random variable. These observations and the fact that Eﬁk is
the average deviation from the maximum observed price per pound suggest

that we expiore the formulation

avy. - pe 03" b1, ey keKy, Jedo (1))
Pake Y5 T B IR Nk so KeKye e
Here 8 > 0 and 6J ~ 0 are scale parameters, and Yj > 0 is a

location parameter which represents the maximum pessible price per

sound. Moreover, if the deviations {ln(apjkz - Sjk): keKs; 1=1,...,Njk}
are normally distributed, then in the exponential model (1.1),

{”jka‘ £=1....,i 3 keK‘3 is a sequence of independent and identically
distributed (i.i.d.) 1ognorma1 random variables. Furthermore, since

the elements of this sequence are identically distributed, we write the

mean and variance of L as unj and 0;1 respectively. Moreover, we assume

that 1n n, ke has zero mean, This assumption ensures that B84 and . 8re

identifiable. The validity of these assumptions is examined after a discussion
of parameter estimation.

This characterization of ”jki implies that for each 2=%1,..., Njk' keKJ
and  jed, n. ke > 0 with propbabiifty one and thus Pspp < Y5 with
probability one. Although Pike can be negative, in this setting it occurs
with small probability. It also implies that the price per pound Dsz s
has mean

-3 .W
2 - 1.2
T Y sje jk 1%J (1.2a)

pjk

-10-



and variance

Nota that (1.2a) and (1.2b) hold for all observations

Moreover, In fﬁ'ijg)

variance

respectively.

Zew o
’ = Ble " J Tk
J J

{y;-p )°
£, = %— n J Pik
* o+ ly, -y )
p 37 Y,
Jk 3k
¢3k = I | —dK
(YJ'U )2
Pik
MNovi, since
n ( - Ly
7 = ﬁ-__J_.;L______J
ij

is a standardized normal random varfable, we know that

probability (price per pound in week J

for grade

V-8 (]n (Yj_.Y) = Ejk ),
. wjk

171

2=1,...

(1.2b)

Ny

has a normal distribution with mean and

(1.3a)

{1.3b)

(1.4)

k s y) =



where

and

- L § < m

o {s) =

1.1 Estimating the Parameters of the Weight-Price Relationship

To examine the assumptions of model (1.1) and to profit from the
characterization it provides we require sstimates of yj R Bj, Hp

J

and o for each jeJ . The probiem of estimating these para-

N
meters %s related to the"prbblem of estimating the parameters of a
three-parameter lognormal random variable. A random variable X

has this distribution if there exists a number & , called the loca-
tion parameter, such that the random variable 1n{8-X) has a normal
distribution. Examination cf (1.4) shows that Pika has a three-

parameter lognormal distribution with location parameter Yj and

£ 3 ,
parameters 5k and ¢Jk .

Estomating Yj

Cansider the problem of estimating the location parameter Yj
for fixed keKj and  jed in the setting presented by {1.4) .
Johnson and Kotz (1970) provide a comprehensive discussion of several

approaches to this problem. They note that although there is no well



accepted solution, any estimate of Y4 must be bounded below by

max(pjkﬁ': 1=1.....Njk; chj} for jed . This results from the

fact that pr(pjk >y ) =0, as can be seen in (1.4) . Qne

]
approach is to estimate yj by yj , the maximum observed price per pound.

We use this estimator even though it is a biased estimator of Yj because

it is easily calculated.

Fstimatd .y B
Am ng BJ 6,]

Difficulties associated with estimating the parameters of {1.1)

and o:j Using the Linear Least Squares Method

with limited data can be minimized by conditioning on a priori know-
ledge of Y5 - This enables one to linearize {1.1) so that conven-
tional estimation techniques can be used. First, without Toss of

generality, one orders and then renames the elements of the sequence

{pjkg : 2=1,....Njk} so that for k‘KJ and ij v By o< %y implies
that pjkz] 5 pjk£2 . Then one transforms {1.1) to
In Apjkz = In Bj - ajwk + Cjkﬁ mg}"'f'Njk
erj {1.5)
Jed A

by subtracting both sides of {1.1) from ;j and taking logarithms.
This results fn a linear model with €5kg = In N3y Since for

(njk2: £=1,..., Njk; ]
random variables, {tjkz: g=1,..., ﬂﬁk; kek; } is a sequence of §.1.d. normal

random variables. As for njkﬁ’ the variance of «¢

Jed, keK,} s a sequence of i.i.d. lognormal

ikt is structurally

~13-



dependent on week {j) , but independent of grade (k) . Furthermore,
since €5, = n Mike and we assumed that 1in njkﬂ has zero mean, (1.5}
can be regarded as a linear regression model. In this case we write the

parameters of the distribution of n in terms of the variance

131,

5 . jkZ
8] o1 €.

. jke
EJ J

as

(1.8a)

f
1]
€

u

antd

{(1.6b)

a
[ =]
1]
D
[SV]R
—
m
M
[
1
—
—

~

The linear regression model (1.5) enables one to estimate the parameters

5 In g, and ol using the Tinear least squares method. Let
J -

J .
y = : =1,..., N, K., i¢J . Then define
7 iks In “pjkﬂ for 271,04, NJk’ kuKJ and  Je
N, = I N, jed
J: kEK.Jk
J
Ho=am 1 Bw )
I Nje keK, Jk Jev
N.
e )ij keK, and jel
= y Ehg ¥
Y5k Ny 4= K& j
and
N,
- 1 ]k
Y; = - Z .
TN keks zzl Yike

-14-



The least sguares estimates are

n s LI (;jk + 6 ., w)

ne, = —- v, W
WL kg £ Jkb 3 3k Tk

2= ;jk ( i+ R )
o] = . Y. - Inf.+ R 1T P R
5N -2 ke, g1 Jkt Ik

Because {e.,.: 2=1,..., . ; keK.} s normal, these
Jjka jk j

estimates are identical to the maximum likelihood estimates with the

A
Lo
[

exception of 3; . To be a maximum Tikelihood estimate must be

J . - ~ ~
multiplied by Ni = (N;_—Z)/Ni. , which for large Nj- is a small

-15-
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(1.7b)
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adjustment. If y., were known then these estimates would be unbiased

and because of their relationship to maximum 1ikelihood estimates they would
be asymptotically minimum variance unbiased estimates. In this application
we assume that Y; = ;j and accept these estimates for the parameters of

the model described by (1.5).

Evaluating expressions (1.6) using the estimates (1.7) yields

2
maximum 1ikelihood estimates for  Mn, ° Unj and By . They are
w

I exp(N. 52 /2) (1.8)
. 3 N
J J
r
0 = exp(N, 62 Y[exp(N, a2 ) - 1]

”j Jj Ej J ej (1.8b)
and

A A

- (1.8c)
BJ exp 1n %



Table 3

Estimates for the Parameters of the
Weight-Price felationshin

12 -
: ek ! ;i i e b ]
28 1 - TG A t.56 62.50 L0043 2.15
2% 17 - M 41 2.80 100.69 1713 2.15
30 1peh - 1110 167 2.57 £5.49 .ps18 2.55
1 - R 75 2.2% 34,42 L0258 3.00
37 7. 80 63 1.36 45.58 1050 3.20
3] 614 - RBZO &3 G.22 77.20 L1003 1.45%
3 27l - 1427 o, £.33 76.43 0788 3.45
35 8/25 - 942 5 5.03 61.86 1297 1.45
36 9/4 - 3710 0 - - - 3.20
37 il - 1] 6.11 75.93 2072 1,65
Ji e - 374 9 1,88 66,58 Aoz 1.65%
19 G725 - 16/ g 6.73 86.76 0207 ).4%
a9 . 16/8 g 5,75 70,48 0015 1,65
L G0 - 10715 15 4.93 66.72 0026 3.85
az i VGe 10732 in 4.93 65.13 6015 1.65

A A ) . '
. Bj’ &, and éc for jc¢J estimated from
J
the Pamlico Sound brown shrimp data. In this case j = 28,...,42

A
Table 3 lists values for Yj

figure 1 shows the relationship between the gstimated regression
line and the points [(Sjk"wk); kCKj} for j = 29,...,34 . The

lines
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are graphed on a semilogarithmic scale where the w coordinate (correspand-
ing to the independent variable in model (1.1)) is plotted along the abscissa
and the S coordinate (correspending to the difference between Yj and the
dependent variable in model (1.1} is plotted aleng the ordinate. The random

dispersion of the data points about these lines supports the use of this

Tinear reqression madel.

1.2 Examining Residuals

An alternative procedure for evaluating how well a mode] fits

data results from the probabilistic structure of the sequence

fe. .= 1=1,.:.,N kaKj} of random variables. By writing {1.5) as

"3k jk?

= In Apjk£_1n Bj + éjwk

13

one sees that  {{In Apjkg - In Sj + Gj wk);2=1,...,ﬁjk; keKj} is

2 sequence af i.1.d. normal random variables with mean zerc and

variance o7 -1n 8, + 6, o121, .,N 0 keK D
sariance O“j ., Hence {(1n ﬁpjka In 83 + 6ka)/a€j 2= sk kek;

is a sequence of 1.1.d. standardized normal random variables. Although we

cannot observe this sequence directly, for each Jed we are able to compute

the sequence of residuals

jk?, = ]n Apjkg’ - Tjk Q-=]!"'! jk
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where for chj and  jed

]/\ A

is a predicted value of In ﬁpjkﬂ determined from the regression line.

Consequently, if the model is appropriate one expects the sequence of

normalized residuals ~
a - R.kﬂ, £=1’...,Njk
JkR ke .
"B J
J Jed
to approximate a samp]e‘Bf ﬁj, = sz Njk independent observations
SN

from a standardized normal distribution.

The Resdlduaf Plot

-

- A
For each jeJ a plot of the points {(Rjkl‘ Tjk): £=1,...,Njk; ksKj}

is called a residual plot. It can be used to check for twe types of de-

nartures from model {1.%):

: f2=1,..., Ejk; keKj} are not independent.

Al R ﬁ kng} do not have constant variance.

2. {Ejki jk;

1f a visual inspection of a residual plot reveals dependence between

A

R.., and T,
J

JKre

, one suspects that a departure of one or both of these

types is présent. Failure to chserve dependence provides credibility for

the model as an appropriate represention of the data., Figure 2 shows residual
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Figure 2

Residual Plot for 1978 North Carolina Brown Shrimp
Price-Weight Relationship
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plots for j = 29,...,34. The numbers in the graphs denote the frequency

of observations at each point. All two digit numbers are underlined.
ATthough the residuals in weeks 29 through 31 appear to be somewhat skewed
balow the axis, we feel this does not represent a serious departure from

the mode]. Furthermore, since the plots reveal no visual dependence between
ﬁjk and Tjk there is no evidence to suspect departures of either type

from the assumptions of model (1.5).

Fuithenr Analysis

To check the residuals for departures from normality we define

~

N

wto= 7 kg (R..,) (1.9a)
an kéKj g1 [n=T.n) ke '

-

to be the number of normalized residuals in the interval [n-1,n} and

[}
ol

M
1.6b
1 I[-n,l~n) (Rjkn) ( )
to be the number of normalized residuals in the interval {-n,1-n) for

egach n =1,...,5 and each JjeJ . Here,

1T {f x e[a,b)

I {x} =
b
(a,b) 0 ctherwise

is the indicator function. Under the assumptions of model (1.5), the
normalized residuals approximate a sample from a standard normal distribu-

: - + a

tion. Hence one expects Mjn and Mjn not to differ significantly.

jn’
the expected value of Ml . Thus if Mj.n and My differ by a significant

In fact, in this case EM}H, the expected value of M}n, equals EM

amount one suspects a departure from the model's normality assumption.
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Table 4

Statistics for Examining Resfduals

. : Interyal
Week  Statistics for Week § " nrv 2 5
J and hssociated txpegt- Iw ) 4
ed valyer 1 ? k] 4 5 nel §n el 00
M 16 | 0 2 0 17
23 " 18 2 2 0 0 22
+
M, 17.2 2.8 0.4 0.0 0.2
M. . 72 3 0 0 0 75
n M., 13 6 9 3 1 §2
EM 63.8 1.3 1.7 6. 0.0
37 0 0 0 g 37
1 o 32 ! 1 a N I8
€M B 51 0.8 00 03
M 4 7 0 i 0 48
32 M a9 P4 g 0 2 43
e, 8.2 6.2 0.9 0.0 0.0
" 23 0 3 0 0 26
3 s 23 0 0 0 0 23
Fy
E My 20,6 3.3 0.5 0.0 0.0
My 16 Q 0 0 0 16
4 : 3 4
?n* 1 0 0 3
Min 10,5 1.7 0.3 0.0 4.0
ut gik R W ] Ni (R, ,)
D 1 (R, ,) and - I R .
4n k§k1 251 {n=1,n)' "1kt Jn k!Kj 1o [-n,1-n) "4kt
Vaiues for EM}n are catculated under the assumption that the normal{zed

res{duals have s standard normal distribution.

-29.

19.5

83.5

12.5



Under the normality assumption one can show that

el = {®(n) - 0(n~1)} Nj . for n=1,...,5
Je d

This results from considering (MET’ Mgz,..., M}S) as a multinomial

variate. See Johnson and Kotz (1969} for a complete description of

the multinomial distribution and related applications.

Table 4 shows values of M;n , My, and E(M ) for ;;=29 .,34 and

n
5
for n=1,...,5 as well as the sums M . Z M and f E(M]
n=} n=1 9 jn

Although we observe an apparently unusual discrepancy between M341

and M34], the significance of this difference is questionable because

of the smail value of N For n > 2 the table shows that neither

\ -
qu nor Mgn dominates systematically for all Jj . With regard to a
comnarison of M'_ and MI_ with EM. , the table provides little
4n Jn Jjn
evidence for rejecting the normality.

2. The Biomass-Revenue Relationship

This section extends the model in {1.1) to characterize the re-
lationship between catch biomass and revenue, our goal being to develop a

model that can serve as a fishery management tool. In particular, we con-
sider the biomass-revenue relationship as an integral part of a larger
mode] that accounts for growth and population dynamics, as well as fishing

dynamics, and is directed toward the study of management strategies.

Hodeting the Price Per Pound 4or Individual Shadimp

In contrast to the previous sections, where we regarded price per
sound as a function of grade category, here we treat price per pound

as a function of shrimp weight. One way to accomplish this is to grade

-23-



each captured shrimp and use (1.1} to determine an associated price per
pound. In week j let Mj denote the number of shrimp captured and
let sz denote the weight of captured shrimp & . Let {Njg: £=1,...,Mj}
be a set of i.i.d. random variables with mean 1w, variance ca. and
unknown distribution function F - (-) . This formulation follows the
growth model described in Cohen aﬂd Fishman (1980).

One represents the grading process by a function that relates
weight wji to the set of grade categories {wk: k=1,...,12} using the
partition {@k: k=0,...,12} described in Section 1. Let

12 1 ] 1
¢ for ;¢ —
1 kI ) ) (T/N. )r N ! ' )
AT VIR P e A B V:
ot k-1 K
ACPRENY 1 (2.1)
Jj2
9 otherwise .

Here K(HjﬁJ can assume grade values 1 through 12 , inclusive,
determined entirely by the weight wjy
21 The Distribution of Revenue Given Number of Captured Shrimp

Usino (2.1) we modify (1.1) to represent p,, by

pji = Y5 - Gjexp(—ﬁij(N_ﬂ)) " Ny £=1,...,Mj . (2.2)

js
vihere O / i : i.1
{ 5y 2 1,...,Hj} is a sequence of i.i.d. lognormal random

variables with mean M and variance o
i

_ : Multiplyin :
s N, plying p., by
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€, yields the revenue due to shrimp £,
-6 W
V. :lﬂl- LI 5.8 K . . £=1go--,M-
TR [YJ RJ J (le) njz] . j
so0 that revenue of a catch with biomass
M3
B, = ) W
i3
"3
¥V, = V.

The convenience of representation (2.4) becomes apparent when we
consider Lhe wagnitude of ”j . Since {le: £=1,....Mj} is a
sequence of i.1.d. random variebles with finite variance, Vj/fﬁg
convergns (2s Mj»w) in probabiiity to a normaily distributed random
variaghle with mean iy <o, and variance 03 , as a result of the

J j
contral 1imit theorem  (Feller 1968, p. 244). Formally,
A=}y
: . ST v ) m AN
]”“ Ur(‘-’j/f Mj - a) Q( _ij >P (2.5)

M . win
J

sn that for large Mj' VJ is approximately normally distributed with

mean M.y, and variance Mju; . Similarly, the biomass Bj is

approvimately normally distributed with mean M.u and variance Mjc;j
J .
Ono can express uvi and Uéj in terms of uwj and G;j . In

-25-
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particular,

2 2 2
-6, M ' UWJ 6j0wi
IR N AT A L
] j J W (2.6a)

2 -§.H
Vip = (pﬁ + g2 ) y2% - ATLI - 3 v +6 (1 - 21-1“'.5\]. +

! i " I i ]

2 2 2 2 =84 2 2 2 2
u 5./2]1 + B, {a. +m_ )e I Wty +g, (1-4n 6.+ 20 5.)] 2 6b
Wy Pty Wy My g T (2.60)

5o that one approximates oé using (2.6a}, (2.6b) and the identity
J

% T B s (2.6¢)
See Appendix A for detaj1s:
To summarize, we have represented Bj , catch biomass in week J ,
as a normally distributed random variable with mean Mjuwj and vari-
ance M.o;_ , where Mj is the number of shrimp captured in week j
and Wy, gnd U;‘ are the mean and variance of the weight of a
shrimp gaptured in week j . We have characterized Vj , revenue

associated with catch B, , as a normal random variable with mean

J
. 2 \ 2 -
Mj“vj and variance Mjovj where ij and Uvj can be approximated
in terms of the estimable parameters of the weight-price relation-
ship, and w and Oi . Expressions (2.6a), (2.6b) and (2.6¢)
J J

pfovide the basis for computing these means and variances. Note that Vj
can be characterized without knowledge of the distribution of the weight
of a captured shrimp. However, since the characterization of revenue in-
cludes the variance U;j , it ref]ects.any uncertainties affecting the
dispersion of captured shrimp weight. These include uncertainties associ-

ated with environmental variation, through its affects on migration
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patterns, growth, mortality rates and fishing efficiencies, as well
as the uncertainties associated with fish escapement through the fishing

net.

2 2 The Distribution of Revenue Given Catch Biomass

In addition to their dependence on My and o;. , Vj(revenue) and
Bj {biomass) also depend on Mj , the numbeg of captured shrimp. Since
one is more likely tc have information about Bj then about Mj , we
describe‘ Mj in terms of Bj . ij and o;_ , and then we characterize
V. using relation (2.6). In this way revenue is functionally related to
catch biomass.

Let 7 denote a normal random variable having zero mean and unit

variance, coammonly call@d a standardized normal random variable. Since

Bj is asymptotically normally distributed, one writes

Bj-Mjuw
s -2
ow_/HE“

J

where ~ indicates approximation. Then one can use the inverse

Gaussian distribution (Johnson 1970, p. 137) to approximate the conditional

distribution of Mj given Bj as

2 1
fy (x18) = L o ALE 'x“wj) 120, 0 s x
3 okl J
J
18.) = B, 4B,y =w® & /B, . N
Moreover, E(MJ BJ) BJ}uwj and var(MJiBJ) u”j Wj/BJ ote that
(2.7) implies
1 5 z vl
M. = [2B.u +o) I° v C/FB.m, * O, Z°] (2.8)
g ZU;_ S T WM
J
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where

o for Z>0
-Zao for Zs0

This expression provides a convenient way of sampling Mj

for given Bj in a simulation experiment. Algorithm R1 describes a procedure

for sampiing Vj ,

Algorithm R

4 . 2
Given: Bj . uwj and.. ij .

7. Sample Z] from a standardized normal distribution.

2. Sample Z, from a standardized normal distribution.

3. Evaluate Mj from (2.8) with Z = ¢

1
4. Evaluate u,  from (2.6a).
J
5. Evaluate 03- from {2.6b) and.(2.6¢) .
3 g

6. V.<M.qu + o Lo ST, .

i3y vy s j

While the distribution of Vj is not easily obtained, one
can show that |

E(Vj[Bj)= Bj uvj/uwj
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and

Vo W W

IR.Y = 2, 2,1 2
var(UJIBJ) Bjov./”w. +uiulo ./Bj .
J J J ]

This description of Vj facilitates evaiuating the effects of
alternative management strategies on revenue. First, with the aid
of a population model, one determines how a management strategy affects
catch biomass Bj , and the character of catch biomass as described by

My and u; . Then, one applies Algorithm R1 to sample catch revenue Vj
" J
from the fishery operating under this management scheme. Hence, this

technique can be used to compare management strategies using performance
measures based on revenue and functions of revenue, such as profit.

By a management strategy we mean a sef of rules which regulate the
behavior of the harvesting sector. For example, in the shrimp fishery
one management strategy requires fishermen to use a one-inch mesh in

the cod-end of the commonly used trawl net, while another may require
fishermen to use a one-and-gne-half-inch mesh in the cod-end {North
Carolina Fisheries Regulations for Coasta1 waters, p 20, 1978, and

McKenzie 1974). In the exampie in Section 4 we examine these two alternatives.

However, before we can proceed to that example we must address the speci-

fic issues regarding the effects of mesh size on Bj » 1, » and 0; ,
J J

and consequently on Vj .

3. The Mesh-leight Relationship

This section examines the effect of mesh size on Mj and on .
J

w?0a



and o;. , the mean and variance of the weight of an arbitrary captured
shrw’mp.J To simplify the exposition we examine the mesh-weight relation-
ship on a population of single age-class fish. Generalization to a
multiple age-class population presents no technical difficulties but
clouds the issues with which this section is principally concerned. For
the remainder of this paper let Mj R ij and 0;_ denote for week Jj ,
the number of captured fish and the mean and variance of the weight of a
captured fish, respectively, from a population of age t (in weeks} fish.
Thus t and j are related by t = j - jO where jo is a fixed date
that defines the cochort.

Because shrimp aré pfincipal]y bottom dwellers, commercial shrimpers
rely on an otter trawi net to capture shrimp from the sandy or muddy sub-
strate. This device consists of:

1. A cone-shaped bag into which the catch is funneled, commonly

called the cod-end of the net.

2. Wings on each side of the bag for herding the shrimp into the

cod-end.

3. Trawl doors, also called otter boards, at the ends of each wing

to hold the net open while under tow.

4, Tow lines connecting the trawl doors to the vessel,

Typically the commercial mesh size ranges from one inch to two inches

when measured along the diagonal of a collapsed {although not forcibly
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stretched) square in the cod-end. The open end of a single net ranges

from 50 to 120 feet wide (McKenzie 1974).

3.1 Traditional Models of Net Selectivity

Beverton and Holt (1957) discuss the problem of modeling the
selectivity of a trawl net for alternative mesh sizes. The selectivity
of a net is a measure of its ability to capture fish differentially as
a funct{bn of fish length. Intuitively one expects that the smaller
the fish the more likely it is to escape through the mesh, This has
been empirically verified, and Beverton and Holt show empirically derived
selection curves for the béttom dwelling flat fish plaice. A selection
curve is a curve fit to data obtained from controlled experiments.

The data consist of the ratios of captures of a given length fish from
two alternatively sized nets versus length. One net is chosen so that
its mesh is small enough to capture fish of any size in the fishable
population, while the other net is chosen so that its mesh is the size
whose selectivity is being measured. By taking the ratio of captures
for the large mesh net to those for the small mesh net one adjusts or
normalizes the selectivity of the large mesh net for the existing size
distribution in the sample population. In this case, for each length
the ratio is an estimate of the probability of selection given that
the fish is the specified length. Alternatively, one minus the ratio

is an estimate of the probability that a fish of that jength escapes

through the mesh.
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The reador should note the distinction between the concepts of
selectivity and fishing effort. In the literature, fishing effort
seasures the resources devoted to harvesting. lence, we may consider
it as a measure of the capitalization of the harvesting sector times
the amonunt of time that that capital is used for harvesting. For the
Shripy fishery we define a week's fishing effort as the number of feet-
hours of trawl net devoted to harvesting for that week (Ricker 1978).
Since a fish can he selected only if it is in the net, the probability of
capturing a given fish is the product of the probabitity of selecting
that £ish given it is in the net and the probability that it is in the
net. This second 0rob5hi1%ty, and not the first, is related to fishing
sffort. In this section we discuss modeling the selectivity of a net
andl the associated selection probability, and when we refer to 'selection
yrobability' we mean the probability of capture given the fish is at
risk in the nnt, |

foverton and Holt's selection curves are cmpirically derived in
the sense that they are smooth free hand curves drawn through a plot
of the data. Thesa curves are S-shaped. Because of this shape, Beverton and
Holt consider modeling the selection process by the ratio of the integral
of two normal curves. However, they do net fit such a model to data or
explore its implications. ﬁ]though Beverton and Holt discuss the notion
of a selection range, they do not formally define it. We define a
selection range by the inierval of lengths over which the probability of

2 selection increases from .05 to .95, DBeverton and Holt show four plaice
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snlection curyns each corresponding to a different mesh size. The

length of the selection range increases monotonically with increasing

mesh size from approximately 50 to 150mm. They also study the relationship
between the center of the selection range and mesh size. The center of fheir
selnction range is the length at which the probability of selection is .5.
They plot these points against mesh size in mm for alternative cod-end

mesh sizes for plaice, and observe that a straight 1ine through the origin
fits thoce data, They define bs , the slope of this line, as a selection
factor that is dependent on the fish species under investigation. For

each species the equation which describes the averaqe behavior represented

-

by the fit is
(.50 selection length) = b (mesh size) . (3.1)

Furthermore, they site estimated values for bs of 2.18 for plaice,
and 3.33 and 2.90 for haddock (Beverton and Holt 1957, p. 225-229).
Another approach to the problem of modeling mesh size is to assume
knife-adqge selectivity. In this case the selecticn range is zero and
selection occurs at a single length, If the selection length is & ,
then any fish smaller than £ 1is selected wifh probability zero and
any fish larger than @ is selected with probability one. In light

nf the empirical evidence presented by Beverton and Holt this i5 a
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crude approximation to actual net selectivity. Beverton and Holt
ackrowiedge this and suggest approximating the empirical

seiection curve with a linear function or a step function (Beverton

and Holt 1957, pp. 75-79). Although any desired accuracy can be

cohicyed with a model based on a step function since the representation

it not continuous, it often Teads to computaticnal difficulties. In the
next section we propose a representation-of net selectivity that addresses

these issues,

3.2 Modeling Het Selectivity

Here we'propbse a*chéracterization of net selectivity
that extends the Peverton and Holt model and is consistent with the
model of growth described by Cohen and'Fishman (1980). The proposed
raprosentation of net selectivity forms an additional part of a fishery

wndel a1 use as 3 management tool as is demonstrated in the example in

Section 4.
In particular, the proposed selection model addresses three issues.

First, it describes an S-shape selection curve similar to that observed by
Beverton and Holt that provides a tractable representation, consistent with
{he other fishery models discussed in this report. Second, the proposed
model describes a continuous:selection curve, overcoming the Timitations

of hoth the knife-edge and the step function models. Third, the model
describes a smooth selection curve, overcoming any Timitations of linear

niecewise linear models of selectivity.
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Anatytic Descrniption

let Lj be a random variable denoting the length of an
arbitrary shrimp at time j and let pr(SILj = 2} be the selection

nrobapility of a shrimp with Tength & . Consider the formulation

- _ T _h
DT'(SILj = 2) = (1 - hg,/g'*)

(3.2)

where ¢* s a positive real-valued parameter and h s a positive
integer-valued parameter. We restrict h to integer values for computational
reasons which become apparent in the next section. One uses (3.2) to represent

alternative nets by adjustina the values of h and £* .

Another parameterization of (3.2}, that clarifies the roles of h
and &* , is obtained by writing & as oat* . In this way & 1is re-

presented as the « proportion of &%, and (3.2) becomes

pr(S!Lj = qox) = {1 - —l—)h . {3.3)

Figure 3 shows graphs of pr(SlLi = at*) as a function of «a for

selected values of h . The reader should note the characteristic S-shape,
similar to the Beverton and Holt empirical selection curves. Also, Table

5 shows value of pr*(SiL‘j =.a1*) for selected values of a and h .
rurthermore, for a given selection probability p, » one can soive (3.3)

for « . For given P and h denote the solution to
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pr(SiLj=gq*) .

1

.07

o

. ™ T T

s 75 1.0 1.25 1.5 1.75 2.0

Figure 3
Graph of the Selection Probability

for Alternative Values of h

-36-

2,25 2.5



pr(SiLy = ai*) = po

by oin , h} , then

[

1/h
alo h):-MU-(.pSI )

s’ In h

for 0 < p. < 1

h >0, integer

I1 this notation, the sclection range has limits &*a(.05, h) and

skl 95, h) , and lengthe 2%[a(.95, h) - (.05, h}]

Table &
salection Pretabitities for Selected Values of b and «

P?(SILJ " al*}

\:\}L - SR L .1 10 oS0
R 04 1051 000 .000 .000 .000 1000
.25 .06 004 903 ,000 .Coo 090 .60
56 gl 652 027 .006 .002 001 -000
75 68 169 41 07 087 074 065

1.40 vag 127 IREL i) 182 .263 . 364
P25 415 408 LED L0620 (630 671 636
.53 A 526 e 799 813 .853 .668
1,75 .44 235 "85 .899 925 .939 .94C
2.00 .562 815 901 .951 .967 975 L9820
2.25 o 873 645 .977 .90 .990 .992
2.5) 574 913 L1969 .989 994 .996 397
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For increasing values of h the length of the selection range
decreases. Table 5 shows evidence of this observation; for increasing h,
pr(S|Lj = qi*) increases for o« > 1.00 and decreases for o < 1.00 .

In fact, for 0 <p. <1, the limiting value of afp,.h) as h

s S
increases without bound is one. Therefore, for large h , (3.2}
approaches the knife-edge representation of selectivity with selection.

* * .
at ¢ . Consequently in (3.2) & 1is a location parameter for controlling

LoX

the selection size, and h is a parameter for adjusting the length of the

sejection range.
Deschiption of Nets Used in Cxample of Secteon 4.

In practice, one estimates values for these parameters for a
particular net and fish species then examines the madet's fit to the
data. With regard to the shrimp fishery, data suitable for use in estimating
the parameters ¢* and h are not currently available. For demonstrative
purposes, in the example in Section 4 wea priori choose two sets of
values for representing two alternative nets. We identify net I by
¢* = 50 rm and h = 10 and net II by £* = 75 mm and h = 20 . These
values are picked with two considerations in mind. First, the computation
required to calculate the descriptors u - and 0;_ using model (3.2) is
proportional to h , Thus, h = 13 or hJ= 20 s 2 compromise between

obtaining a selection curve which is too fiat to adequately represent net

selectivity (this would occur for small h ) and having a large h which

2

would inflate the computation time necessary to evaluate My and 9y
' J

in a general model. In Table 5 observe that as h decreases the selection
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curve flattens and has an increasing selection range. More
importantly, the probability of selecting the smaliest commercially
sized shyimp (105 mm is the commonly accepted commercial minimum) is
.92 for net ! and .74 for net I1. Hence the probability that net I
fails to select the minimal commercial size shrimp is .08 as compared
t5 .26 for net II. Hence, these nets are within a range of sizes of
which managers may be interested in studying.

Since eguation (3.1) relates «(.50, h)e* , the midpoint of the
sgiection range, to mesh size, it is instructive to use it to compare the
mesh size of nets 1 and II. For the three alternative selection factors
pubtistied by Beverton and ﬁo?t, expression (3.1) shows that the mesh size
of net I ranges from .5& to 1.05 inches and the mesh size of net II ranges
from .98 to 1.53 inches. Since commercial nets have mesh size in the range
of one to two inches this anmalysis provides evidence that the characteriza-

tion of net selectivity with the particular choice of parameters associated

with nets I and II is consistent with traditional models.

3.3 The Mean and Variance of the Weight of 3 Selected Fish

The effect of net selectivity on the biomass-revenue relationship
is expressed through u and Ui , the mean and variance of weight of
' J
a selected shrimp as well as the selection probability. In this section

we discuss the characterization of these three factors in the context of
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a sinile age-class population. e continue to assume a population of

age + chrimp inweek J§ . In principle, generalizing to a multiple age-
class population prescnts no difficulties. This generalization depends

on the proportion of cach age-class in the population which in turn re-
flects each specific year's environmental conditions and how these condi-
tinns affect migration, mortality and abundance. These topics are dis-

cussed in another report.

Cxpressions for u  and 0;. depend on a characterization of the
joint distribution of se%ection (Sfand the length (Lj) of an arbitrary
population member in week J . Since we restrict our attention to a
single age-class population we focus on the evaluation of the mean and
variance of ﬁtk . the weight of a selected shrimp of age t and sex
k (x = 1 for female and 2 for male), and we write uw(t) for its mean and

cw(t) for its variance. Let Etk denote the length of a selected shrimp.

For the weight-length relationship we take

e = al) ) (3.)

where a(k) and b(k) are species-related parameters and €y, is a lognormal rando:
variable with mean e‘fz(k)/2 and variance eT(k)(eY(k)-l) . This formula-

tion is the weight-length rdlationship as discussed in Cohen and Fishman

(1980). The characterization differs from theirs in that it applies to a

solected rather than to an arbitrary shrimp in the population at large.

Although as presented in Cohen and Fishman f19805.Lj has a.normal distriﬁution

~

2
with mean uL(t,k) and variance cL(t,k) (for shrimp of sex kJ, Ltk does not
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have a normal distribution. However, one can characterize the moments of

Ltk .
First, let us consider the joint probability of selecting a shrimp

of sex k with Tength Lje(c,d)

d Q‘UL(tsk)
pr(S, ¢ < Lj < d) = jr: pr(S[Lj = L) ¢ W. dr .

Hence, the probability of selecting an arbitrary age t , sex Kk shrimp
is

o

!?,-uL(t,k)
‘pr(SIt,k) :f.‘.m DY‘(Sle =L) ¢ W da

h
7 () (1™ expl-Alm) wy (£,K) + Am)? of (£k)/2] (3.5)

£

where Xx{m) = M qn h . See Appendix B for the details. Then Ltk has mean

,Q.*
. 1 " h m
w(£,K) = E Ly ® SETERY mEO (M{-D" a(m) o(m) (3.6)
where Am) = w (£,k) = Alm) o (t,k)

o
—
=
e
1

exp[-(m) u,_(t,k) + Mm)?al(t,k)/2] .

Furthermore, the nth central moment of Ltk is
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tk ML

Table 6 gives expressions for the integral in (3.7) for s =1,...,6.
For reading case we suppress the subscripts and functional notation on

«::I?f.t,k) and A{m) in Table 6.

iy

Table 6

Expressions for the Integral in (3.7)

s [ (%Eﬁ%l) de

1 A

2 AR+l

3 A+ 307 A

4 AY + 6ot AR+ 0"

5 8% 4 100% A + 150" A

5 A5+ 1502 AY + 450° A® +150°
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Continuing to paraliel the development in Cohen and Fishman (1980)

we anproximate the mean and variance of ﬁtk by

L

uw(t,k) = Ewtk éa(k)eY(k)’/z [ut(t;k)b(k) + a(b(k))] ' (3.8a)

2 = y =
aw(t,k) var Ntk (3.8b)

e (e P 1 g(000)) - G (6002 + ale()2

resnectively, where

() Y () £ {(L (t, k)M

b) = b) E - AL, '
gn_](b)(b'n+1) ~ ¢ k)b

90 (b} = TaThE) ' 9o(0) =g (s

and Lbj 1s the largest integer less than or equal to b .
Let p be the probability that an arbitrary population member is

male. Then

ar(s[t) = par(sit, 1)+ (1 - alpr(s]t,2) (3.9a)
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Frriashy TS0 0 T

is tho nrobability of selecting & shrimp of age t , and
p' = or(s]t,1)/pr(s]t) (3.9b)

is the probability that an arbitrarily selected shrimp is male. Thus

for a uniform {U,1) variate U , the weight of an arbitary selected shrimp

of age t s

i, = ﬁt'] Lo,y U * By g Tpr 4p(®) (3.10)
with mean
u (t) = olu (8,1) + (10" b (t,2) (3.172)
and variance
a.(t) = ot (ul(t,1) +4 (6.1)) + (1 - o) {o2(t,2) +ul(t,2)) - ui(t)
(3.11b)

Yere the indicator function is defined as

] if 2 <xsb
I(a,b](x) - 0 otherwise .

* a 1 4 » - ‘
Sirce in woeck J  the population is age t , we have that i == “w(tf

¥}

= ¢'{t) . This is Aot the case for the general multiple age-

ana U;l "

J .
¢lass population., Furthermore, the notation in (3.10) emphasizes the
adel's applicability to computer simulation samnling. In particular,

-~

the notation suggests a procedure for sampling W, . Briefly, one first
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samples 2 uniform deviate U , then if U< p' one samples Nt 1

-~

otharwise one samples wt,? .

In summary, we have characterized the mean {3.11a) and
variance (3.11b) of the weight of an arbitrary shrimp selected from
a pnuulation of age t fish as well as the probability of selecting
73,03 an arbitrary fish from this pepulation.

3.4 The Bigmass-Revenue Relationship When Accounting far
let-Characteristics

n this section we show how one can incorporate the effects of net
mesh into the characterization of revenue as a function of captured bio-
mass. as described in Algorithm RY. While parallel to the development in
cactions 2.1 and 2.2 on the biomass-revenue relationship, here cur atten-

tion facuses on a homogeneous population of age t shrimp.

A Chatacterdzation of Catch Bivmass

The probability of catching an arbitrary fish is decomposable into
the product of pr(S) , the probability of selecting {(catching) an arbitrary
fish, given it is at risk, and the probability that an arbitrary fish in the
population is at risk. The former probability is the selection probability
" while the latter is related to fishing effort. The distinction between
these is important. For a given level of fishing effort in week j the
humber of shrimp at risk, ﬁj , is independent of mesh size. Then the num-

ber of the ﬁj shrimp actually selected depends upon the mesh size of the

net and the distribution of lengths. Let W, denote the weight of
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Then B., the biomass catch in week j

selected shrimp & = 1,...,Mj .

can be represented for simulation sampling purposes as

M.
- (U ) (3.12)
Weo Lo, pr(sit)) *

w
"
1 =

2=1

fU,: 2=1,...,M5} 15 a sequence of independent and identically

where j

distributed uniform (0,1) random variables.
For large M. the distribution of Bj is approximately normal

with mean

EB. =M p (t) prisit)
U R | (3.13a)

and variance

—

var B, = M,
J

j Llog(t) + () pr(s[t) - [y (t) pr(sit)]®) . (3.13b)

Expression {3.12) differs from (2.4a) in two ways. First, (3.12)
is for a single age-class population while (2.4a) is for a multiple age-

class population. However, (3.12) can be extended to a multi age-class

population. Second, {3.12) explicitly accounts for the effects of
alternative mesh size on capture biomass and thus is a more useful

description for evaluating management policies.

An ALgondithm fon Simulating Sampling Catch Blomass and Catch Reveaue

Algorithm R2 enables one to evaluate the parameters of the distri-
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bution of Vj {revenue) and Bj (biomass) for a population of age i

fish with explicit accounting for mesh size. The precedure requires

that Mj , 2* and h be specified. The algorithm is presented so

that a sequence of (Q independent observations of Vj js made and the

gth such observation is denoted v{i,q) .

Algorithm R2

Given: M. , £* , h, uL(t,k) , ci(t,k) , o and Q.

1.
2.

10.
11.
12.
13.
14.

16.
17.

k«1 .

Evaluate pr(S|t,k) from (3.5).
Evaluate y7(£5k) from (3.6).

n+1 .

Evaluate E{ (itk - ut(t,k))" } with Table 6 from {3.7).
n+«n + 1,

If n<#6 go tob.

Evalute uw(t,k) from (3.8a).

Evaluate U;(t,k) from (3.8b).

k<k + 1.

If kx s 2 go to 2.

or(SIt) «opr(SIt,1} + (1-p} pr{sit,2) .
o' « o pr(s|t,1)/pr(Slt) .

Approximate uw(t) by (3.11a).
Approximate o;(t) by {3.11b).

Evaluate E Bj from (3.13a).

Evaluate var Bj from (3.13b}.
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18. Approximate w by (2.6a).

19. Approximate 01% by (2.6¢).

20, q+1. !

21. Independontly sample 21, 22 and 23 from a standard normai

distribution.

72 B,+EB. + 2, JYvarB. .
J J 1 ]

23. Evaluate Mj with 2 =2, from (2.8).

2§, M.+ .
MJ LNJJ

j uvj + 23 cvj JMj .

26. Store the qth sample of Vj in V{(j.a}.

25. V,<«M
J

27. q<q + 1.

(B }

Return the 0 samples in V(j.q)

|

4. h~n Example of the Biomass-Revenue Model as a Management Tool

when coupled with a comprehensive population model the characteri-
-ation of catch revenue has potential for addressing several management
concerns. For axample, one way to evaluate alternative management
strategies 15 to compare catch revenues computed from a fishery mode]
operating under the a]ternative schemes. Since catch revenue is a ran-
dom quantity one can acconplish the comparison by means of a sampling
expariment imbedded in a corputer based cimulation of the fishery. By
sampling catch revenue the simulator observes the effects of the manage-
ment strategy on revenue for varying environmental and economic condi-

tions. To illustrate the approach, we compare catch revenue obtained

~48-



from two alternative net meshes, nets [ and II, in a population setting

that includes growth in fish size. 1In particular, we focus on the rela-

tionship between net mesh preference and the length of the fishing peri-
od and consider how fishing costs affect these decisions.

Consider a population of 1000 single age-class shrimp first at risk
in +ne ‘last week in July (j = 30). The initial age of this population
is chosen so that it is the youngest group for which the net I selection
probability is greater than 0.5 . This corresponds to a four week oid

population whose members have a 90.6 mm mean length and a 6.5 mm

standard deyiation of length as determined using our model of shrimp growth

(Cohen and Fishman 1580).

To provide a meaningful yet simple example, we assume growth 1in
size, but no out-migration, in-migration or natural mortality; that is,
although the individuals in the population are growing in length, and
therefore weight, the number of individuals in the population are
neither increasing nor decreasing from natural causes. Any
shrimp not captured in week J remains in the fishing grounds, grows
as described in Cohen and Fishman (1980}, and remains a candidate for
seTection in week j + 1 . Since the selection probability for either
net is greater than 0.5 , four weeks of fishing are sufficient for
catching virtually the entire 1000 fish.

In this example we compare eight management strategies. Each

strateqy restricts mesh size to one of two possible sizes and specifies
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one of four alternative fishing periods. Table 7 enumerates the

Table 7

Alternative Management Strategies

Strategy Mesh Size Restriction Fishing Period Limits
1 Net | Week 30
? Net I Weeks 30 through 31
3 Net I Wieeks 30 through 32
4 Net I Weeks 30 through 33
5 ~ Net 1L Week 30
G Met 11 Weeks 30 through 31
7 Net 11 Weeks 30 through 32
8 Net 11 weeks 30 through 33

eight options. In a stochastic setting the simulator has available
several measures for comparing the performance of these atternative
strategies. le consider four: the mean cumulative catch revenue and
the three guartiles of cumulative catch revenue. Although means are
the most frequently considered comparative measures, the quartiles
can be used to obtain another perspective. A quartile is the value
of catch revenue that an arbitrary observation does not exceed with

probability .25, .50 or .75 ({depending on which of the three quartiles
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is being considered). Thus, we say that 25% (50% or 75%) of the time
the catch revenue will be less than the lower guartile (median or
upper gquartile). Since each of these gives additional information
about the distribution of catch revenue, each provides an alternative
measure of comparison. For example, suppose a manager is particularly
sensitive to an occasioral low catch revenue and wants to choose a
management alternative to minimize this possibility. In this case he

could use the lower quartile for comparing alternatives.

Regardless of the comparison measure, the underlying issue in this
example involves the tradeoff beiween growth and fishing costs. This can
be seen by considering Ehe_aiternatives at the end of week j ¢ fish
week j + 1 or cease fishing. In week J + 1 the size of the fish tend
to be larger than in week J , and hence they command a higher price.
Howover, since there are fewer fish in week j + 1 a fisherman must ex-
pend additional effort to catch them. Therefore, the management str;tegy
falls into one of two types: 1) use net I, cépture the bulk of the
population early in the four week period and then cease fishing or
2) use net 11, take a longer period to capture the bulk of the popula-
tion, but gain higher revenue due to growth at a greater expense in
fishing costs. Although one may argue that in a scenario without
migration it is preferable to initiate fishing late in the fishing
period, here we restrict fishing to commence in week 30. This behavior
is characteristic of a competitive fishery cuch as a shrimp fishery

where on the opening date the non-cooperative fishermen vie for the

largest share of the population,
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Let ng) denote the cumulative catch revenue in dollars obtajned

from fishing the population in weeks 30 through n . The superscript

(k) denotes net I for k=1, and net II for k = 2 . Then,

(k) {k '
R(k)" Rn-] * Vn ) for n 30,-.-,3.3

n

0 " forn =29 .

curthermore, if in a simulation experiment we denote the 1ith observation

) . :
0t ng’ r(k](n,i) , then a sample of 1000 such observations is ob-

by
tained by sampling V§k) and Mgk) using Algorithm R2 and the calling
sequence: - ~

Algorithm R3

Given: K
1. gl
2. i1
3.t 4.
4. § « 30
= o4y 0.
5. k). 1000,

(k)

7. Sample Mgk) and Vi using Algorithm RZ.

5. r{k)(j,i) = r(k)(jrili)+ ng!
9. ﬁ(k) + (ﬁ(kl-Mgk)). {continued)

J+ 3

5A1thoggh more computationally efficient algorithms can te found for
sampling R(K)  the acdded discussion required to describe such a pro-
cndure is nBt central to the example, and wauld lead us away from the
purpose of this illustration.
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10, J « j+1.
11, t « 41,
12, If j <33 go to 7.
13. i « i+i.

14. If i < 1000 go to 3 else step.

We estimate E Rﬁk) , the expected value of ng)

var R(k) the variance of Rak) for k=1,2 and n=30,...,33 by

¥

, and

n
1000
E R](]k) S, M oK) (n,1)
aﬁd
1000 .
var RIF) = oo I (r() a1y - € Rk
'[:

respectively. Furthermore, we estimate the lower quartile, the median, and
the upper quartile of Rﬁk) by
(k) 1000
= Loy .
0y (p) = mintx: [ Ipg (K)o 4yy(x) > 100000-p)F

i=1

vhere p = .25, .50, and .75 respective1y.6

"Since these estimators are based on 1000 replications of a simulation
their variance will be <mall. For this reason, and to aveid additional
notation we do not distinguish the estimators from the parameters they

estimate.
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4.1 Discussion

Optimal Management Straiegy Based on Revenue

For cach mesh size, Table 8 shows estimates of the aforementioned
parameters of the distribution of cumulative catch revenue as well as
the probability of selecting an arbitrary poptlation member for
n=30,...,33 . A1 of these quantities were obtained from a sampling
experiment performed using Algorithm R3. The table shows that if fish-
ing is permitted for only one weck, n = 30 , net [ is preferred to net II.
This can be seen by comparing the sample mean and guartiles in the row
n =30 for net [ , with the corresponding quantities for net IT.

If fish{ng is permitted for more than one week, then a large mesh net
ig preferable to a small mesh net. In particular, for n = 33 , the sample
mean and quartiles for net II are larger than those for net I, These ob-
servations agree with intuition; for in a nonmigrating population with
individuals growing and increasing in value, it is preferable to select
the larger, higher priced fish. In this case the optimal management
strategy is to permit fishing for the entire four week period (n = 33)

and tc allow only the use of net Ii, yielding a sample mean revenue or

33.30.
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Table 8

Comparing Revenue for Alternative Management Policies
{revenue tn dollers)

Net I
1 1 1
Sirategy  n pr(5:t) et var R;‘} cﬁ PRI Y(.50) qg"{.zsy
1 30 .83 18.3 34.5 14,4 18.4 22.6
2 3 .90 281 24.0 19.6 24.0 28.4
K £ el 24.9 A5.2 20.2 24.9 29.2
4 13 96 25.0 45.6 20.5 25.0 29.3
Net 1}
? i
Stretezy 0 ertsin) e alP var Rl8 ol o Psor ol
5 20 .56 131 23.0 9.8 13.0 16.3
6 N 10 254 4.0 20.8 25.3 29.9
? 2 i 3.4 55.4 26.4 31.4 36.1
B 13 83 33.3 2.4 231 33.1 28.4

Optimal Management Strategy Bused on Pregit

Although a helpful example for illustrating Algorithum R3, this

scenario neglects the important consideration of fishing costs. Let

C denote the weekly cost in dollars of fishing the popuilation in the

exampie,
inclusive.

dollars as

(n - 29)C is the cost of fishing weeks 30 through n
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With C =5 and

10 chosen for demonstrative purposes, Table 9 shows

sample means, variances and quartiles of Pﬁk) for n = 30,...,33

and k =1 and 2, Although Pék) is a random variable (n - 29)C

is not; thus, except for the samp?é variances, the estimates in Table 9

are obtained from those in Table 8 by subtracting (n - 29)C from each

entry in row n .
Tebla @
Cuomparing Profit for Alternative Management Polic{es
{profit in dollars)
¢« 500
Met 1
srategy o el el ofPas ol oiTes)
1 30 13,8 4.5 9.4 13.4 17.6
Z n 14 4.0 9.6 14.0 &,
3 114 9.9 45.2 5.2 2.9 14.2
4 kx| 5.0 5.6 0.5 5.0 9.3
Net [}
Strateay  n £ p(2) wr of2) o{?(.29) ofsey el
) 10 8.1 23.0 1.8 8.0 1.3
& N 15.4 44.0 10.8 15.3 9.9
7 2 6.4 55.4 11.4 15.4 2i.1
] n 13.3 tB. 4 8.3 131 8.4
L= 15,00
Het |
Strateny n £ PE‘I) vir P_i‘) 0£”{.251 0,{1”{.50] Oi”(.?!ﬂ
i o 8.% kLI 44 8.4 12.5
2 3 4.1 4.0 -0.4 4.0 5.4
3 2 -5.1 45.2 -%.8 =5.1 -0.4
4 kx| -5.0 45.6 -19.58 -15.0 =10.7
Net 1)
strategy A £ Piz) var P‘E?] QT{‘M(JH C'i“f.SC}] Qizlf.?S}
5 30 1.1 23.0 -0.2 1.0 6.3
& 31 4.5 4.0 0.3 §.3 9.%
? 32 1.4 55.4 -3.6 1.4 6.1
a 31 6.7 58.4 -11.9 6.9 1.6
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Table 9 shows that for C = 5 , regardless of the comparison measure,
the optimal strategy is to permit fishing in weeks 30 through 32 with net II.
As the table shows, this strategy results in a mean profit of 16.40. How-
ever, for C = 10 the table reveals a preference for permitting fishing
only one week with net 1. This action, which yields sample mean profit of
8.50, contrasts with the optimal strategy in the Tower cost scepario. Here
fishing costs are high enough to offset benefits from growth and the use of
a large mesh net. This example demonstrates how the optimal strategy
responds to changes in fishing costs.

flthough the optimal strateyies are independent of comparison
measure, one should not conclude that it is upnecessary to consider
alternative measures, and simply compare sample means. In a more
comprehensive fishery scenario, involving a multi age-class population
and complex management alternatives, it is unlikely that each measure
will result in identical optimal policies. In this case a manager needs

to articulate his criterion of optimality clearly.

The Vafue o4 Fishing Cost Ingjormation

in additional observation concerns the manager's decision when he
is uncertain of the true fishing cost. By comparing the expected pro-
£it from following an optimal strategy, based on correctly known cost,
with the expected profit obtained from following a suboptimal policy,
based on unknown cost, one can quantify the value of information about
fishing cost. We illustrate this analysis by considering several scen-
arios where the manager has limited information about cost but must
choose to follow a policy that assumes either ¢c=5 or C=10. For

example, if € = 5 but the manager acts as if C = 10, then his deci-

sion, as shown in Table 9, is to require use of net I and to permit
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fishing only for week 30. Since in fact C = 5 , the sample mean profit
from this decision 15 13.50 . On the other hand, if C was truly 10,
his decizion result in a sample mean profit of 8.5 , the optimal expected
profit when C o= 10 . If one assumes that each cost value is equally like-
Ty, “he expected value of acting as if C = 10 is 11 In a similar
manner. if € =5 and € = 10 are equally likely an estimated expected
yalun of profit of §.9 results when the manager acts as if € =5 . Com-
paring 4.9 to 11 shows that it is preferable on the basis of estimated
cxpected profit to act as if €= 10 .

e can represent this symbolically by letting k*{c} and n*{C) be

the optimal k and n given cost C . Then these quantities satisfy

k*(C}, . (kJ,
Elp iC] = max, E[P iCl .
n*{c) n
1<ks?
30<ns33

Jith this notlation we ropresent the expected profit when acting as if

- e . k*(10)
£ - 10 when in fact € =5 by E[P 15] . As we have observed
n*(10)

‘his equals 13.5. 1f we denote the probability that C =5 by
bl = §) and the probability that € = 10 by pr(C = 10} , then
k*{10) ke

ELP 1= Efp

0 ey pppk*(10) ]
(10} H*(]O)JJ] pr(C = 5) 4 EEPn*(?O)[IOJ pr(C = 10)

k*(5}
i5 the expected profit when acting as if C = 10 and E[pn*(s)] ’

sinilarly defined, is the expected profit when acting as if C = 5.
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The reader should note that there are at least two interpretations
of the probabilities, pr(C = 5} and pr(C = 10) . One holds that the
cost C is not a random quantity but a constant with one of two values,
5 or 10 , unknown to the manager. The probabilities then represent the
manager's expert subjective estimate of the probability that each cost is
correct. The otner interpretation holds that cost is a random quantity,
and that these probabilities define the nrobability mass function of this
random variable. In either case our analysis holds.

Recall we observed that if

pr(C = 5) = pr{C = 10) = .5

-

then

st 0%
and

E[P::E:; ] -8.9

Since 11 » 8.9 the manager acts as if C = 10 . On the other hand,
if the manager had perfect information of the current cost he would

choose the decision k*(§)} , n*(5) when C =5, and k*{(10) ,

n*(10) when C = 10. Thus, with perfect information the estimated
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kR (B) k*(10)
- . = 5 d ELP 10
expected profit is E[Pn*(5)|5] 16.4 when C an [ n*(10)f ]

when C = 10 . Then, under the assumption that pr(C = 5} = pr{C = 10)

n

the expected value of profit is

k*(10)

*(5) _
157 + .5E[Pn*“0)[m] = 12.45 .

5E Pk
-5E( n*{5

lHence, an estimate of the expected value of fishing cost information,
ramely the difference between the expected value of profit under perfect
information and the expected value of profit when acting as if C = 10
(the best chbice when pr{ = 5) = pr(C = 10) = .5} , is the difference
between 12.45 and 11 or 1,45 {Schlaifer 1969).

This example serves to illustrate three aspects of the techniques
presented in this repert: 1) an incorporation of the stochastic revenue
characterization into a biological model, 2} a technique for sampling
revenue based on the biomass~revénue model, and 3) a use of the data cb-

tained from a sampling experiment to address management concerns with

decision analysis techniques.

5. Simnmary
We have accomplished several tasks in this paper.  First, we

presented a description of the relationship between the weight of a
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captured shrimp and the regional price of that shrimp that accounts

for structural and random variation. Second, we have estimated para-
meters for the model from data of the North Carolina brown shrimp
fishery of Pamlico Sound. Third, we have extended this representation
to relate regionally captured biomass to regional revenue. Fourth, |
we have extended the model of mesh selectivity proposed by Beverton

and Holt in a way that is compatible with the model of growth described
by Cohen and Fishman (1980). Finally, we have shown how the model of
mesh selectivity is incorporated into the biomass-revenue relationship,
and in an example we have demonstrated how the characterization can be
used for decision makiéé. Furthermore the methodology presented in this

paper is applicable to a multiple age-class population. We address this

issue in another report.
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Appendix_A

In this appendix we justify the approximations (2.6a) and

12.6b) of U“j and EV;R where

)

) -G W
. 1. . - B.e KiW,
jo 7 e byy - oege K JRLEQ

for reading convenience we suppress the subscripts J and ¢ and

write this expression as
-8
ve=uly - oee k)

where ¥{W) is defined as in (2.1). Since v contains twg sources
of variation, 1 and W, we dehote expectation with respect to each
random variable by subscripting the expectation operator E by either

1 or W. Hence

1|V kS EWEI]V (I\Ja)

and
fv'= ENEn v’ {A.1b)

Since the right hand side of (A.la) is equivalent to

E Wy - I?ehéwK(w)u”}}

W
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we write

-5
wy =y - By E (e We(w)) . (A.2a)
Similarly from (A.1b},
. 2 -sw
Evi o= (u) + 0l) Y7 - 28Y un E, (We TTK(W)) +
2 (2 o+ oR) B (W) (A.2b)
) n noM

-~

Examination of (A.2a) and (A.2b) shows that to complete the evaluation

of ., and Ev® the quantities

£ (W e M) (4.3a)

W

and

Eyy (WPe™® WeiW))  for £ = 25 and & (A.3b)

require explicit representation. Recall that the distribution

function of W is F (.)}. By definition one obtains

=-H5-



This expression is approximately equal to

I

ok _6

J xe % dF (x) - (A.4)
e

11

k=0

with the error of approximation dependent both on the distribution
function Fw(-) and on the partition {mk: k=0,...,12) . In practice
this is a good approximation because the partition has been determined
in the marketplace as a solution to a minimization problem. In theory,
the iarketplace is~a setting where both the buyer and selier will only
agree on the partition for which the error of this approximation is
"closest to zerc". We leave this notion vague to avoid issues not

central to the discussion, and we write (A.4) as

Wy
[ ~<e'6 X
! dF
g w(x)
which is equivalent to
o [ T
g, (0 ey | xe™ Kar (x) - [ e R, ()

a o

Because shrimp whose weighls are less than typ are not commercially
valuable, and shrimp whose weights are greater than Wy are extremely

rare, the quantity
u)

12 ‘ ™
f g™ X de(x) +[ e~ ® % de(x]
0

{
Wy
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is small relative to Ew(we‘éw) . Thus we approximate (A.3a) by

e e ¥y, (A.5a)

W

Similarly, we approximate (A.3b) by

- [ .
£, (4 e &Ny (R.5b)
These expressions, in contrast to (A.3a) and {A.3b), can be
evaluated by an application of the methods of statistical differentials

(Johnson and Kotz 1069). let & =W -y, and substitute A+, for

W in {A.5a). Thus

-y

. S5 My BN ST Y
£, We ) = Ey [(a + T e W ]

Expanding e results in

e ety

W ) EN [{a + ‘*lwv){3

. w . i to . [
= Ew;e “‘JWDiw ‘_J (ELL- + .{.\.(\.:"ﬁ_)_ ]} .
i=0 i=p

~5 Wy, o -6 1 4
Ew(w e ) = e w ({1 + 5

where the error of approximation depends on the size of the high order

(degree three and greater) central moments of W . A similar argument

yields that

2 2 2
£ W 2 o £y _ 2 i
Ew(w e Y2 e Yw [ow {1 2uwg tu, g /2 + pw].
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Ev

{See Johnson and Kotz {1969) for other examples of the method of
statistical differentials). Combining these expressions with (A.2a)

and (A.2b) results in approxinations for b, and Ev?

2
This completes the representation of By and Ev. , in terms of
2

UN and Uw .
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in terms of

w, and o~ . In particular,

Ev = 1, * by [y -8 e Ty M, (1 4 5?§3w - i.:;)] (A.6a)
and
2. 03 + ui = (u; + oi) Yz - 2y8une-5uw [oi (1 - 2uw6 + Eéﬁz) + U$] +

8 (o + up) 9:26““' fod (1= aug+ 2us )+ o] (A.6b)



Appendix B

In this appendix we show that expressions (3.5), (3.6) and (3.7)
are equivalent to pr(S|t,k} , ut(t,k) and (E (Etk - u[(t,k))n}
respectively. For reading ease we suppress the subscripts and functional
notation relating to sex and the age of the single age-class Popu]at{on,
namely k and t respectively, From a binomial expansion the selection

probability

or(siL = 2) = (1 ; FQ}—Q*-)h

h
= (1 - MY g, h)

is cauivalent to

? (h) (-1)" e-A(m)i
mso

where A(m) = Inh . Since L is normally distributed with mean

D

By and variance oi ,

pr{s)

e 9,-111_
j [)I‘(S!L =E,) g‘)( 'JL ) d1

ar h _ y . Q.-U
:[ :) (lfl]l) ( ._1 )l” o ,\( II'I’. JfIl ( L) d;l
—o m=() “L

h = . -
) c.’au-n%e'*(“ﬂk ¢(f__“.t.) "

m=0
Since the integral is equivalent to the moment
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generating function of a normal random variable evaluated at A(m) one has

-y _ | fmY?
[e —).(m)i |[1(--—-L—) di = e :\(m)iL + A\ll.) 1L/2

and thus pris), the unconditional selection probability,equals

h ot N
pr(s) =} {m)(_]>m o Alm) n + o (m) o
m=0

2
[4

This expression agrees with (3.5). Furthermora, because -

the joint probability that L js in the interval (a,b} and the fish is

selected is

-b
I . o
i (E)(-lfi/ e'k(m)i \ﬁ(%*lLJ deo (0.1)

m=0 a Y.

the expected length of a selected shrimp is

1

)F(éT 1

o ) , i".“ll
({,})(-1)“‘f ce *(“"*wp(--[;ft-) ds (8.2)
0 - ‘

Wy T

Vy
L

Moreover, one can show that

- g-3!
St PNy e = A () 0 )
re ( Y de = A(m] e
—[Ol Cﬁ_

where
Aln) = I rm) GE

s () = exp(-a{m) it A{m)? 01/2]

Hence the axpression for Lhe mean sclected length

agrees with (3.6} .
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To evaluate the nth central moment of L we expand (T - ut)n

using the binomial expansion and then apply the expectation operator so that

n -
£ (T ™ s DD ECH D™ (8.2)
S:D .
But as in (B8.2) ,
E(LS) = — ? (B (-n" 1: g~ Mmlt ¢(Q-“L‘ de
b s
- ) (,ﬁ})(—Umo(m) fzsﬂ;(’?"ﬂﬂl) ds
PrisTnso o L (B.4)

Substituting expression (B.4} for E(Es) in {B.3) yields (3.7) for

£ (L™
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